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ABSTRACT
Microsatellite sequences from Litopenaeus schmitti, a penaeid shrimp species used in Cuban aquaculture, were
identified from a 300-700 bp insert DNA library. A total of 910 colonies were obtained and screened for repetitions;
114 resulted positive: 106 for the oligonucleotides (TC)15, (TG)15 and (TAA)15 and 8 for the (GTG)15 oligonucleotide.
Dinucleotide repetitions prevailed over other motifs and GT was the most abundant, representing 50%. Optimal
amplification conditions were determined for two loci (Lsch-1 and Lsch-2), which were used to analyze three shrimp
populations (one wild and two hatchet). Six alleles were found for Lsch-1 (GT)n and 8 alleles for Lsch-2 (composite).
The results suggest that the two loci are useful for studying L. schmitti populations.
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RESUMEN
Microsatélites del camarón blanco Litopenaeus schmitti (Crustacea, Decapoda). A partir de una genoteca
de ADN construida con insertos entre 300 pb y 700 pb, se identificaron secuencias microsatélites de Litopenaeus
schmitti, especie cubana de camarón utilizada en la acuicultura. Las 910 colonias que se obtuvieron fueron analizadas
en busca de repeticiones y resultaron positivos 114 clones de los cuales 106 lo fueron para los oligonucleótidos
(TC)15, (TG)15 y (TAA)15 , y 8 para el oligonucleótido (GTG)15. Las repeticiones de dinucleótidos prevalecieron sobre
otras y el dinucleótido GT fue el más abundante, lo que constituyó 50% de las últimas. Se determinaron las
condiciones óptimas para la amplificación de dos loci (Lsch-1 y Lsch-2), los que fueron utilizados en el análisis de
tres poblaciones (una natural y dos de cultivo). El número de alelos encontrado para el locus Lsch-1 (GT)n fue de 6
mientras que el locus Lsch-2 (compuesto) presentó 8. Los resultados sugieren que los dos loci son útiles para el
estudio de poblaciones del camarón blanco L. schmitti.
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Introduction
Litopenaeus schmitti is one of the two economically
relevant shrimp species in Cuba; particularly for its
introduction in aquaculture more than fifteen years
ago. Different human activities and natural events
have deeply affected shrimp ecosystems endanger-
ing natural populations of this species. One way to
protect this resource and indirectly sustain shrimp
aquaculture industry is to evaluate genetic variabil-
ity and natural population structure [1]. Previous
works using allozymes have suggested a limited ge-
netic variability among penaeids populations at lim-
ited geographic scales [2, 3]. However, a higher
sensitivity and a discriminatory power have been
described using other molecular markers such as
mtDNA, RAPDs, and microsatellites, when studying
the population genetics of different penaeid species
[4�7]. Especially, a growing body of information on
microsatellite sequences is available for some penaeids,
and a number of primer sets for PCR amplifications
has been designed [6, 8�10]. However, the usefulness
of the primers for inter-species application has been
questioned in some studies [11]. The aim of the present
study is to characterize microsatellites loci isolated

from L. schmitti and evaluate the usefulness of two of
them in genetic population studies.

Materials and Methods

Library construction and screening
Genomic DNA was extracted from a single ethanol
preserved pleopod muscle of L. schmitti according to
García-Machado et al. [12]. Partial genome library
construction and screening was carried out following
Estoup and Cornuet [13]. Sau3AI restriction fragments
of sizes ranging from 300 bp to 700 bp were ligated to
a previously BamHI-digested and alkaline phos-
phatase-treated pUC18 vector. Ligations were used
to transform Epicuriam Coli® XL1-Blue ultracompe-
tent cells (Stratagene, USA).

All the colonies were screened for repetitions using
the DIG-labeled oligonucleotides (TC)15, (TG)15,
(TAA)15 and (GTG)15. Labeling was achieved using
the Tailing Kit (Boehringer Mannheim, Germany). The
(TC)15, (TG)15 and (TAA)15 oligonucleotides were
pooled in the same hybridization mix, and the hybrid-
ization temperature was set to 48 ºC, whereas hybrid-
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ization temperature for (GTG) 15 oligonucleotide was
65 ºC. Complete or partial sequences from 30 posi-
tive clones were obtained using an automatic sequencer
ALF express (Amersham Pharmacia-Biotech, Swe-
den), and using as sequencing primers the universals
M13-40 forward and M13 reverse primers.

DNA was isolated as described above from samples
of three populations. Different amplification condi-
tions were assayed with unique pair of primers de-
signed for each locus, changing MgCl2, DNA, and
primer concentrations and the annealing temperature
(Table). PCR products were run on 6% sequencing
gels and scored against a known sequence. The corre-
sponding bands were developed using the Silver Stain
Sequencing Kit (Promega, USA).

The deviations from Hardy-Weinberg equilibrium
were estimated using the program Byosis [14]. The
observed and expected heterozigosity, the number of
alleles per locus and the linkage disequilibrium and the
genetic diversity were calculated according to Nei [15]
using the program Genepop 3.1 version [16] and
Genetix [17].

Results and Discussion
Of the 910 colonies obtained, 114 were positives: 106
for the oligonucleotides (TC) 15, (TG) 15 and (TAA) 15

and 8 for (GTG) 15. Ten of the 30 clones sequenced had
16 repeated motifs. Dinucleotide repetitions were found
in 8 arrays, prevailing over penta- (3), tri- (3), and
tetranucleotide motifs (2). Among the dinucleotide re-
peated motifs, GT (50%) was the most abundant fol-
lowed by TA (25%) and CT (12.5%), respectively. A
similar prevalence of dinucleotide repeats was also
reported for L. setiferus [6] and P. monodon [7]. As
for L. schmitti, dinucleotide GT was the most abun-
dant in L. setiferus [6] but as frequent as CT in P.
monodon [7]. GT motive is also more frequent in fish
[18, 19] as well as in animals than in plants [20].

Optimal amplification conditions were determined
for two loci: Lsch-1 and Lsch-2 (EMBL accession
numbers AJ277641 and AJ277642). Reaction mix
consisted in 10 ng of template DNA, 20 pmol of
forward and reverse primers, 0.1 mM of each dNTP,
1.5 mM of MgCl2 and 0.5 units of DNA Polymerase
(Amersham Pharmacia-Biotesh, Sweden). PCR reac-
tion was developed in 12 cycles of 1 min at 94 ºC, 30 s
at 2 ºC below annealing temperature, 30 s at 72 ºC, 22
cycles of 30 s at 94 ºC, 30 s at annealing temperature,
30 s at 72 ºC, preceded by an initial denaturation
step (5 min at 94 ºC) and followed by a final elonga-
tion step (10 min at 72 ºC) (Table).

Allele frequencies for the two loci are shown in
the Figure. The size of the Lsch-1 alleles seems to
vary according to the repetition of two bases. Two
variants, differing by four nucleotides, were far more
frequent in locus Lsch-2. However, other alleles
appear apparently resulting from the loss or gain of
1, 2 or 3 bases. They could be related to the pres-
ence of 4 or 5 T instead of 3 in some places, since
such sequences are observed once each in the se-
quenced clone. For this reason the variation of the
Lsch-2 locus was not well defined as a change of the
repetition number.

The Table summarizes the main characteristics and
some variability estimates of the two-microsatellite
markers from the studied populations. The quantity of
alleles was different at each population. Yaguanabo, one
of the hatchery populations, presented only 2 Lsch-1
alleles and 5 Lsch-2 alleles (Figure). This result could
be expected as genetic variation is not taken into ac-
count during stock foundation and maintenance across
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Figure. Allele sizes (bp) and frequencies at each Litopenaeus
schmitti populations. A) Lsch-1; B) Lsch-2.
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generations, which result in most cases in a bottleneck
effect and inbreeding [21].

Santa Cruz population is the first generation from
wild brood stock reared at the hatchery center. The
allele number of this population is similar to Tunas de
Zaza�s wild population. This type of domesticate
group of animals has been reported with a higher
heterozigosity of some isozyme loci and a particular
behavior of number of rostral tooth [22].

Relative diversity was higher for locus Lsch-1
(Table) indicating stronger resolution of populations.
This can be related with a higher variation of di-
nucleotide repeat; according with the results of
Charkraborty et al. [23] that found a high mutation
rate in a survey of microsatellite variability in natural
populations.

The difference between the observed and expected
heterozigosity was higher for Lsch-2 than Lsch-1, but
no significant departure from the Hardy-Weinberg

equilibrium for both loci in all three populations and
no linkage disequilibrium were found.

Taking into account that both loci resulted poly-
morphic and that the genetic variability correlates with
population histories, it could be suggested that Lsch-
1 and Lsch-2 are useful markers for the study of L.
schmitti populations.

Other potentially useful microsatellite loci from
the present library are under analysis for making a
better characterization of L. schmitti wild and cul-
tured populations.
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